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ABSTRACT

Spirocyclic C-arylribosides were synthesized from the known γ-ribonolactone derivative. Lithium acetylide addition followed by glycosylation
with 3-(trimethylsilyl)propargyl alcohol converted the ribonolactone to silylated diynes. After desilylation or iodination, subsequent ruthenium-
catalyzed cycloaddition of resultant diynes with alkynes or chloroacetonitrile gave spirocyclic C-arylribosides.

The synthesis ofC-glycosides, in which the glycosidic
oxygen is replaced by a carbon atom, has been an area of
intense study in bioorganic and synthetic chemistry. This is
becauseC-glycosides are stable toward enzymatic and
chemical hydrolysis, and therefore, they are potent inhibitors
for glycosidases and glycosyltransferases.1 Frequently en-
counteredC-glycoside motifs in nature areC-arylglycosides.
Because of their significant biological activities, the total
synthesis of natural products such as anthracyclinoneC-
glycosides, gilvocarcins, or kidamycins has been an important
subject in synthetic organic chemistry.2-5

Papulacandins are also naturally occurringC-arylglyco-
sides, some of which are active againstP. carinii pneumonia,
the common opportunistic infection in AIDS patients.6 In
contrast to otherC-arylglycoside natural products, they have
an interesting spirocyclicC-arylglycoside framework (Figure
1), which has been an attractive synthetic target.7 On the
other hand, furanose derivatives bearing a spiroacetal moiety
have received less attention.8 To the best of our knowledge,
no spirocyclicC-arylribosides with structures related to the
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papulacandins have been reported to date, althoughC-
arylnucleosides have received increasing attention as biologi-
cally important nucleoside mimetics.9 Herein, we wish to
report the diversity-oriented synthesis of the spirocyclic
C-arylribosides using the Cp*RuCl-catalyzed [2+ 2 + 2]
cycloaddition as a key step.10

C-Arylglycosides are generally obtained by the direct
arylation of appropriate carbohydrate substrates, although the
control of regio- and stereochemistry is a crucial problem.11

In 1995, McDonald and co-workers reported a fascinating
strategy to construct a spirocyclicC-arylglycoside framework
closely related to the papulacandins.12 Their method utilized
the rhodium(I)-catalyzed [2+ 2 + 2] cycloaddition of a
C-alkynyl-O-propargylglycoside with acetylene as a key step.
The same strategy was applied to our synthesis of spirocyclic
C-arylribosides, with significant improvements: (1) the short-
step preparation of diyne substrates via highly stereoselective
glycosylation using montmorillonite K10 clay reported by
Tomooka, Nakai, and co-workers13 and (2) the mild and
efficient Cp*RuCl-catalyzed [2+ 2 + 2] cycloaddition
developed by us.14

The crude hemiacetal obtained via addition of 2-(trimeth-
ylsilyl)ethynyllithium to the knownγ-ribonolactone115 was
directly submitted to the glycosylation with 3-(trimethylsilyl)-
propargyl alcohol in the presence of montmorillonite K10

and 4 Å MSaccording to the literature13a to give silylated
diyne 2 in 81% overall yield with highâ-selectivity as
reported (Scheme 1). After alkaline desilylation, diyne3 was

obtained in 66% yield as an inseparable mixture with anR/â
isomer ratio of 1:9.

With the ribose-derived diyne3 in hand, the ruthenium-
catalyzed cycloaddition with acetylene was carried out as
shown in Scheme 2. Under an acetylene atmosphere,3 was

treated with 1 mol % of Cp*RuCl(cod) (Cp*) η5-C5Me5,
cod ) 1,5-cyclooctadiene) in 1,2-dichloroethane (DCE) at
room temperature for 1.5 h, resulting in the complete
consumption of3. Purification by silica gel chromatography
gave cycloadducts6â and 6R in 74% and 8% yields,
respectively.

To examine the cycloaddition regioselectivity, we next
investigated the reaction of unsymmetrical diyne5, which
was prepared from1 in a manner to3 as outlined in Scheme
1. Diyne5 reacted with 4 equiv of 1-hexyne in the presence
of 5 mol % of Cp*RuCl(cod) at ambient temperature to give
corresponding cycloadducts7â and 7R in 87% and 5%
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Figure 1. SpirocyclicC-arylglycoside framework of papulacandins
(left) and unprecedented ribose analogues (right).

Scheme 1. Synthesis of Diynes3 and5 from
γ-Ribonolactone1

Scheme 2. Cycloaddition of3 with Acetylene
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yields, respectively (Scheme 3). Notably, both cycloadducts
were formed as single regioisomers. Diyne5 also success-
fully underwent cycloaddition with chloroacetonitrile (4
equiv) at room temperature to give the pyridine derivatives
8â and8R in 79% and 4% yields, respectively.16

Recently, complexity generating, multicomponent coupling
processes have become increasingly important in terms of
the diversity-oriented synthesis toward the construction of
small molecular libraries.17 In this context, we recently
developed the sequential silver-catalyzed Csp-H iodination/
ruthenium-catalyzed cycloaddition/palladium-catalyzed cou-
pling process, transforming 1,6-diynes into various highly
conjugated aromatic molecules.18 This novel strategy also
significantly expands the product diversity in the present
spirocyclic C-arylriboside synthesis. Toward this aim, we
next attempted the synthesis of an iodinated spirocyclic
C-arylriboside platform10 (Scheme 4).19 According to the

report by Nishikawa, Isobe, and co-workers, trimethylsi-
lyldiyne 4 was treated with 10 mol % of AgNO3 and 1.5

equiv of N-iodosuccinimide (NIS) to afford iododiyne9 in
77% yield without affecting the TBS ether moiety.20 Iodo-
diyne 9 was thereafter treated with 5 mol % of Cp*RuCl-
(cod) in DCE under an acetylene atmosphere at ambient
temperature to deliver the desired10 in 88% yield as a single
stereoisomer.

The iodobenzene10was subsequently subjected to a range
of palladium-catalyzed C-C bond-forming reactions (Scheme
5). The Mizoroki-Heck reaction with styrene was carried

out by using a catalyst system derived from 2.5 mol % of
Pd2(dba)3 and 11 mol of % Buchwald’s S-Phos,21 affording
trans-stilbene derivative11 in 77% yield. The Sonogashira
reaction with phenylacetylene under conventional conditions
gave diphenylacetylene analogue12 in 95% yield. Finally,
the Suzuki-Miyaura coupling withp-methoxyphenylboronic
acid proceeded successfully with the Pd2(dba)3/S-Phos
catalyst system to furnish biphenyl derivative13 in 89%
yield.

In conclusion, we have successfully developed a conver-
gent route to spirocyclicC-arylribosides with structures
related to the papulacandins. The starting ribose-derived
diynes were efficiently obtained from the knownγ-ribono-
lactone derivative via acetylide addition/stereoselective gly-
cosylation using montmorillonite K10 clay. The cycloaddi-
tions of the obtained diyne with acetylene, 1-hexyne, and
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Scheme 3. Cycloadditions of5 with 1-Hexyne and
Chloroacetonitrile

Scheme 4. Synthesis of9 and Its Cycloaddition with
Acetylene

Scheme 5. Cross-Coupling Reactions ofC-Iodoarylriboside
Platform10
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chloroacetonitrile were carried out under the ruthenium
catalysis to deliver the corresponding benzene and pyridine
products in good yields and with excellent selectivity.
Moreover, the ruthenium-catalyzed cycloaddition of the
iododiyne derivative with acetylene gave the spirocyclic
C-iodoarylriboside platform, which effectively underwent the
Mizoroki-Heck reaction with styrene, the Sonogashira
reaction with phenylacetylene, and the Suzuki-Miyaura
coupling withp-methoxyphenylboronic acid.
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